

Arizona State University

Mobile App Based in Home Parkinson Disease Management

Shovito Barua Soumma

Doctoral Student (Biomedical Informatics) Embedded Machine Intelligence Lab College of Health Solutions, Arizona State University

BMI 310 App Development– April 11, 2024

Outline

- What is the problem (PD)?
- Significance of wearables in PD space
- App Design
 - **Design decisions**
 - Symptoms
 - In-home monitoring
 - Sensor data collection
 - App activities and views
- Machine learning for prediction
- What is supervised learning?
- What is self-supervised learning?
- Results

Do you know about him?

https://slate.com/technology/2016/06/what-caused-muhammad-alis-parkinsons-disease-its-nearly-impossible-to-say.html

Parkinson Disease (PD)

- Progressive disorder (Age>50)
- Affects the nervous system and the parts of the body controlled by the nerve

Common Symptoms:

- Tremors
- Gait & Balance Problem

Freezing of Gait: A sudden and temporary inability to initiate or continue walking, as if their feet are glued to the ground.

• No cure

Wearables in PD

IMU Sensors (6D)

- Accelerometer (3D): Acceleration •
- Gyroscope (3D): Angular velocity
- Extract Different Features (Velocity, and gait pattern, detect physiological biomarkers) ٠
- Early PD Detection ٠
- Detect deterioration for known PD patients •

device

Moreau, C., Rouaud, T., Grabli, D. et al. Overview on wearable sensors for the management of Parkinson's disease. npj Parkinsons Dis. 9, 153 (2023). https://doi.org/10.1038/s41531-023-00585-y

Wearables in PD

Store the data collected by wearables into a cloud service

Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. *J Neuroeng Rehabil*. 2012;9:21. Published 2012 Apr 20. doi:10.1186/1743-0003-9-21

6

App Design

There are 2 features to be implemented.

- 1. Capture Sensor Data Accelerometer, Gyroscope, Heart rate, step counter.
- 2. Implement PD Hauser Diary

	ON	ON with dyskinesia	OFF	Asleep
06:00-06:30				X
06:30-07:00				×
07:00-07:30			×	
07:30-08:00			×	
08:00-08:30	×			
08:30-09:00	×			
09:00-09:30	×			
09:30-10:00	×			
10:00-10:30	×			
10:30-11:00			×	
11:00-11:30			×	
11:30-12:00			×	

The app captures the data related to hauser dairy. A wireframe design of app -

App Design

- The sensor data collection is made by smartwatch app.
- The app collects sensor data of accelerometer, gyroscope, heart rate, step counter.
- The composite data is then to synced cloud every 10 minutes if the watch is worn.
- There also a feature on the app to indicate medication is taken.
- To optimize the battery usage data is collected at 50Hz frequency.

What is ML?

Traditional Programming

- Takes inputs and generates outputs based on the program
- Programs are fixed unless they are updated manually

What is ML?

Machine Learning

- Takes data and expected output as input
- Learns the data patterns/representations without any type of explicit programming
- Continuously evolve into better models

ML in Prediction

Supervised Learning

Train & Test both have labels (ground truth)

Self Supervised

Train the models in 2 steps

- Pretraining: Uses unlabeled data and learns some interesting features/patterns
- 2. Finetune:
 - a. Uses the previous learned knowledge
 - b. Retrains the learned knowledge using few labelled data to solve a specific problem

Arizona State University

On Going PD Research

DEAP-ML: Data-Efficient, Adaptive, and Power-Aware Machine Learning for Parkinson's Long-Term Home Monitoring

DEAP-ML: Data-Efficient, Adaptive, and Power-Aware Machine Learning for Parkinson's Long-Term Monitoring

- A single IMU sensor → Reducing patient burdens
- Patient-independent Model
- Cost-effective opportunistic AI model
- Uncontrolled home environment for long time remote monitoring.
- Optimized for extended battery life

a. Pretext Task: Raw signals $X \in \mathbb{R}^{N \times T}$ Masked window, $\hat{X} = mask(X, m)$ $\frac{\text{Trained Pretext Model, } f_{\theta}}{L_{\theta} = \frac{1}{N_m} \sum_{j=1}^{N_m} (\hat{x}_j - x_{p(j)})^2}$

b. Down Stream Task: MLP on top of pretext model $\frac{\hat{Y} = h_{\theta,\phi}(X) = g_{\phi}(f_{\theta}(X))}{L_{ce}(\theta,\phi) = -\frac{1}{N}\sum_{i=1}^{N} \left[y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)\right]}$

DEAP-ML: Data-Efficient, Adaptive, and Power-Aware Machine Learning for Parkinson's Long-Term Monitoring (Contd)

Differential Hopping Windowing Technique (DHWT)

Results

- Using small amount data we got promising results
- Long FoG episodes are easily detectable

	Precision	F1	Accuracy	FoG Episodes	FoG windows, (Recall/ Sensitivity)
SSL	86.5%	79.7%	76.6%	86.6%	74.2
SUP	90.1%	86%	83.1%	86.6%	82

Episode	Avg	Detected	Detected	
Time (sec)	Latency	Episodes	Windows (%)	
< 5 sec	0.18s	88%	73%	
6-12 sec	0.83s	86.21%	67%	
>13 sec	2.35s	97.3%	82.4%	

Results

magnitude, $m = \sqrt{x^2 + y^2 + z^2}$

Set a magnitude Threshold (α) to discard the inactive windows.

If $m < \alpha$: discard the current window as it is inactive (not related to gait activities)

- It will extend the battery life
- Model will be lightweight → easy to deploy into a mobile wearable devices

Future Work

Suggest Effective Medication Plan

Medication time Medication dose

- Assess PD Severity
- Detect atypical and typical PD

Arizona State University

Thank You!

Lab Website: https://ghasemzadeh.com/

Saman Khamesian

Reza Rahimi Azghan

Abdullah Mamun

Shovito Barua Soumma