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• Easy Use: https://nixtlaverse.nixtla.io/neuralforecast/models.timellm.html

https://www.shovitobarua.com/
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Introduction

• Time series forcasting is important in 
financial market. 

• But freqeuenct changes in data 
distribution makes it challenging.

• Small amount of historical data

• Models are not generalizable for different 
task (weather vs stock)

• Training all the parameters using huge 
amount of dataset

• TimeGPT is a foundation model for time 
series forcasting => needs huge resource 
to retrain model



Dataset Statistics

• Lama (decoder only architecture)

• Not capable to handle timeseries data

A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine, Hanguang Xiao et al 2024

https://arxiv.org/search/cs?searchtype=author&query=Xiao,+H


TimeLLM

• Existing LLM model is not changed [No Finetuning]

• Introduces reprogramming to use the existing backbone w/o 
finetuning

• ReVINE Normalization method



RevIN (ICLR 2022)

• Reversible Instance Normalization
• https://github.com/ts-kim/RevIN 

https://github.com/ts-kim/RevIN


Motivation

• At a high level, Time-LLM starts by tokenizing the input time series sequence with a customized patch embedding 
layer. These patches are then sent through a reprogramming layer that essentially translate the forecasting task 
into a language task

• we can also pass a prompt prefix to augment the model’s reasoning ability. Finally, the output patches go through 
the projection layer to ultimately get forecasts.

Note that this is different from 
fine-tuning the LLM. Instead, we 
teach the LLM to take an input 
sequence of time steps and 
output forecasts over a certain 
horizon. This means that the 
LLM itself stays unchanged.



Input Patching

• Patch by patch (instead of looking at a single time stamps)

• Preserves the temporal semantic meaning

• Each patch is a token
• Reduce the computation as lower no of token

• Once patching is done, the input sequence is sent to the 
reprogramming layer.



Transforming Input into Language Task

• Reprogramming Layer : It essentially 
maps the input time series into a 
language task, allowing us to leverage 
the capabilities of the language 
model.

• Once this is done, the translated 
patches are sent to a multi-head 
attention mechanism and a linear 
projection is done to align the 
dimension of the reprogrammed 
patches to the dimension of the LLM 
backbone.



Augment the input with Prompt-as-Prefix

Constrains using "Patch-as-Prefix"

• LLMs have limited precision with exact numbers 
(like time series data) since they are primarily 
designed for text.

• They struggle with long-term forecasting, where 
precise numerical trends are essential for accuracy.

• Inconsistent numerical formatting when generating 
numbers can lead to misinterpretation of the 
forecasts.

• For example, a model could output "0.6" as 
• ["0", ".", "6"] or 

• as ["0", ".", "60"], making it tricky to standardize the predictions.



Final Step: Output projection

• Once the prompt prefix and reprogrammed patches are sent to the LLM, it 
outputs patch embeddings.

• This output must then be flattened and projected linearly to derive the final 
forecasts, as shown below.



Results
• Backbone: Llama-7B
• Long term forecasting

• Input: 512 length
• Output horizo, H = {96,192,336,720}
• Evaluation metric: MAE, MSE

• Short term forecasting
• Input: 512 length
• Output horizon, H = {6,48}

• Few shot learning (1st 10% predictions vs 1st  5% prediction)
• Zero shot learning (optimized in one dataset then used it in another dataset 

w/o any prior examples)
• For both cases: only long term horizon was tested

Outperform all prior baseline works



Summary

• An input series is first patched and reprogrammed as a language task.

• Appended a prompt prefix specifying the context of the data, the 
instructions for the LLM, and input statistics.

• The combined input is sent to the LLM.

• The output embeddings are flattened and projected to generate 
predictions.



Things to do for better results

• Training the model for longer. 
• I trained for 100 epochs, but the paper uses 1000 epochs.

• Change LLM. 
• I used GPT-2, 

• but LLaMA, which was used in the paper, is much better. 

• Better prompt engg. 
• My prompt is very minimal, and perhaps we can better engineer it.

• https://colab.research.google.com/drive/1q9PBQrcKeBaHHWWc3f5P2wOcBGH5KzUu#scrollTo=sBQOWsp3-BX_   

•  

https://colab.research.google.com/drive/1q9PBQrcKeBaHHWWc3f5P2wOcBGH5KzUu


Using MLP and NBEATS



Opinion

• would I use Time-LLM in a forecasting project?
• Probably not.

• The reality is that Time-LLM requires a lot of computing power and memory. After all, we 
are working with an LLM.

• In fact, when reproducing the results from the paper using their script, training the 
model on a single dataset for 1000 epochs takes approximately 19 hours using a GPU!

• Plus, LLMs take a lot of memory space, with billions of parameter usually weighing a few 
gigabytes for the very large models. In comparison, we can train lightweight deep 
learning models in a few minutes and get very good forecasts.

• For those reasons, I think that the tradeoff between a possible increase in forecasts 
accuracy and the computing power and memory storage required to run such model is 
not worth it.
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