
TimeLLM: Time Series Forecasting by
Reprogramming Large Language Models

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, Qingsong Wen

Presenter: Shovito Barua Soumma

Date: October 16, 2024

• ICLR 2024, [96 Citations as today]

• Code Base: https://github.com/KimMeen/Time-LLM

• Easy Use: https://nixtlaverse.nixtla.io/neuralforecast/models.timellm.html

https://www.shovitobarua.com/
https://github.com/KimMeen/Time-LLM
https://nixtlaverse.nixtla.io/neuralforecast/models.timellm.html

Introduction

• Time series forcasting is important in
financial market.

• But freqeuenct changes in data
distribution makes it challenging.

• Small amount of historical data

• Models are not generalizable for different
task (weather vs stock)

• Training all the parameters using huge
amount of dataset

• TimeGPT is a foundation model for time
series forcasting => needs huge resource
to retrain model

Dataset Statistics

• Lama (decoder only architecture)

• Not capable to handle timeseries data

A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine, Hanguang Xiao et al 2024

https://arxiv.org/search/cs?searchtype=author&query=Xiao,+H

TimeLLM

• Existing LLM model is not changed [No Finetuning]

• Introduces reprogramming to use the existing backbone w/o
finetuning

• ReVINE Normalization method

RevIN (ICLR 2022)

• Reversible Instance Normalization
• https://github.com/ts-kim/RevIN

https://github.com/ts-kim/RevIN

Motivation

• At a high level, Time-LLM starts by tokenizing the input time series sequence with a customized patch embedding
layer. These patches are then sent through a reprogramming layer that essentially translate the forecasting task
into a language task

• we can also pass a prompt prefix to augment the model’s reasoning ability. Finally, the output patches go through
the projection layer to ultimately get forecasts.

Note that this is different from
fine-tuning the LLM. Instead, we
teach the LLM to take an input
sequence of time steps and
output forecasts over a certain
horizon. This means that the
LLM itself stays unchanged.

Input Patching

• Patch by patch (instead of looking at a single time stamps)

• Preserves the temporal semantic meaning

• Each patch is a token
• Reduce the computation as lower no of token

• Once patching is done, the input sequence is sent to the
reprogramming layer.

Transforming Input into Language Task

• Reprogramming Layer : It essentially
maps the input time series into a
language task, allowing us to leverage
the capabilities of the language
model.

• Once this is done, the translated
patches are sent to a multi-head
attention mechanism and a linear
projection is done to align the
dimension of the reprogrammed
patches to the dimension of the LLM
backbone.

Augment the input with Prompt-as-Prefix

Constrains using "Patch-as-Prefix"

• LLMs have limited precision with exact numbers
(like time series data) since they are primarily
designed for text.

• They struggle with long-term forecasting, where
precise numerical trends are essential for accuracy.

• Inconsistent numerical formatting when generating
numbers can lead to misinterpretation of the
forecasts.

• For example, a model could output "0.6" as
• ["0", ".", "6"] or

• as ["0", ".", "60"], making it tricky to standardize the predictions.

Final Step: Output projection

• Once the prompt prefix and reprogrammed patches are sent to the LLM, it
outputs patch embeddings.

• This output must then be flattened and projected linearly to derive the final
forecasts, as shown below.

Results
• Backbone: Llama-7B
• Long term forecasting

• Input: 512 length
• Output horizo, H = {96,192,336,720}
• Evaluation metric: MAE, MSE

• Short term forecasting
• Input: 512 length
• Output horizon, H = {6,48}

• Few shot learning (1st 10% predictions vs 1st 5% prediction)
• Zero shot learning (optimized in one dataset then used it in another dataset

w/o any prior examples)
• For both cases: only long term horizon was tested

Outperform all prior baseline works

Summary

• An input series is first patched and reprogrammed as a language task.

• Appended a prompt prefix specifying the context of the data, the
instructions for the LLM, and input statistics.

• The combined input is sent to the LLM.

• The output embeddings are flattened and projected to generate
predictions.

Things to do for better results

• Training the model for longer.
• I trained for 100 epochs, but the paper uses 1000 epochs.

• Change LLM.
• I used GPT-2,

• but LLaMA, which was used in the paper, is much better.

• Better prompt engg.
• My prompt is very minimal, and perhaps we can better engineer it.

• https://colab.research.google.com/drive/1q9PBQrcKeBaHHWWc3f5P2wOcBGH5KzUu#scrollTo=sBQOWsp3-BX_

•

https://colab.research.google.com/drive/1q9PBQrcKeBaHHWWc3f5P2wOcBGH5KzUu

Using MLP and NBEATS

Opinion

• would I use Time-LLM in a forecasting project?
• Probably not.

• The reality is that Time-LLM requires a lot of computing power and memory. After all, we
are working with an LLM.

• In fact, when reproducing the results from the paper using their script, training the
model on a single dataset for 1000 epochs takes approximately 19 hours using a GPU!

• Plus, LLMs take a lot of memory space, with billions of parameter usually weighing a few
gigabytes for the very large models. In comparison, we can train lightweight deep
learning models in a few minutes and get very good forecasts.

• For those reasons, I think that the tradeoff between a possible increase in forecasts
accuracy and the computing power and memory storage required to run such model is
not worth it.

	Slide 1: TimeLLM: Time Series Forecasting by Reprogramming Large Language Models
	Slide 2: Introduction
	Slide 3: Dataset Statistics
	Slide 4: TimeLLM
	Slide 5: RevIN (ICLR 2022)
	Slide 6: Motivation
	Slide 7: Input Patching
	Slide 8: Transforming Input into Language Task
	Slide 9: Augment the input with Prompt-as-Prefix
	Slide 10: Final Step: Output projection
	Slide 11: Results
	Slide 12: Summary
	Slide 13: Things to do for better results
	Slide 14: Using MLP and NBEATS
	Slide 15: Opinion

